Port code to Qiskit Serverless
Note
This documentation is relevant to the new IBM Quantum® Platform. If you need the previous version, return to the IBM Quantum Platform Classic documentation.
The following example demonstrates how to port existing code to leverage Qiskit Serverless.
Update the experiment
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit.circuit.random import random_circuit
qc_random = [(random_circuit(20, 20, measure=True)) for _ in range(30)]
optimization_level = 3
# If you have not previously saved your credentials, follow instructions at
# https://quantum.cloud.ibm.com/docs/guides/cloud-setup
# to authenticate with your API token.
service = QiskitRuntimeService(channel="ibm_cloud")
backend = service.get_backend(backend_name)
pass_manager = generate_preset_pass_manager(
optimization_level=optimization_level, backend=backend
)
# @distribute_task(target={"cpu": 1})
def transpile_parallel(circuit, pass_manager):
"""Distributed transpilation for an abstract circuit into an ISA circuit for a given backend."""
isa_circuit = pass_manager.run(circuit)
return isa_circuit
transpiled_circuits = [
transpile_parallel(circuit, pass_manager)
for circuit in circuits
]
print(transpiled_circuits)
# transpile_remote.py
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_serverless import get_arguments, save_result, distribute_task, get
from qiskit_ibm_runtime import QiskitRuntimeService
# Get program arguments
arguments = get_arguments()
circuits = arguments.get("circuits")
backend_name = arguments.get("backend_name")
optimization_level = arguments.get("optimization_level")
pass_manager = generate_preset_pass_manager(
optimization_level=optimization_level, backend=backend_name
)
# Distribute task across workers
@distribute_task(target={"cpu": 1})
def transpile_parallel(circuit, pass_manager):
"""Distributed transpilation for an abstract circuit into an ISA circuit for a given backend."""
isa_circuit = pass_manager.run(circuit)
return isa_circuit
try:
# Get backend
# Follow instructions at https://quantum.cloud.ibm.com/docs/guides/cloud-setup to authenticate with your API token.
service = QiskitRuntimeService(channel="ibm_cloud")
backend = service.get_backend(backend_name)
# run distributed tasks as async function
# we get task references as a return type
sample_task_references = [
transpile_parallel(circuit, pass_manager)
for circuit in circuits
]
# now we need to collect results from task references
results = get(sample_task_references)
# Return results
save_result({
"transpiled_circuits": results
})
except Exception as e:
# Exception handling
import traceback
print(traceback.format_exc())
Upload to Qiskit Serverless
Follow the instructions on the Introduction to Qiskit Functions page to authenticate with your API token.
from qiskit_ibm_catalog import QiskitServerless, QiskitFunction
# Authenticate to the remote cluster and submit the pattern for remote execution.
serverless = QiskitServerless()
transpile_remote_demo = QiskitFunction(
title="transpile_remote_serverless",
entrypoint="transpile_remote.py",
working_dir="./source_files/",
)
serverless.upload(transpile_remote_demo)
Output
'transpile_remote_serverless'
Remotely run in Qiskit Serverless
from qiskit.circuit.random import random_circuit
from qiskit_ibm_runtime import QiskitRuntimeService
# Setup inputs
qc_random = [(random_circuit(20, 20, measure=True)) for _ in range(30)]
backend = "ibm_brisbane"
optimization_level = 3
# Running program
transpile_remote_serverless = serverless.get('transpile_remote_serverless')
job = transpile_remote_serverless.run(
circuits=qc_random,
backend=backend,
optimization_level=optimization_level
)
job.job_id()
Output
'727e921d-512d-4b7d-af97-fe29e93ce7ea'
Next steps
Recommendations
- Read a paper in which researchers used Qiskit Serverless and quantum-centric supercomputing to explore quantum chemistry.
Was this page helpful?
Report a bug or request content on GitHub.