Skip to main content
IBM Quantum Platform

LinearAmplitudeFunction

class qiskit.circuit.library.LinearAmplitudeFunction(num_state_qubits, slope, offset, domain, image, rescaling_factor=1, breakpoints=None, name='F')

GitHub

Bases: QuantumCircuit

A circuit implementing a (piecewise) linear function on qubit amplitudes.

An amplitude function FF of a function ff is a mapping

Fx0=1f^(x)x0+f^(x)x1.F|x\rangle|0\rangle = \sqrt{1 - \hat{f}(x)} |x\rangle|0\rangle + \sqrt{\hat{f}(x)} |x\rangle|1\rangle.

for a function f^:{0,...,2n1}[0,1]\hat{f}: \{ 0, ..., 2^n - 1 \} \rightarrow [0, 1], where x|x\rangle is a nn qubit state.

This circuit implements FF for piecewise linear functions f^\hat{f}. In this case, the mapping FF can be approximately implemented using a Taylor expansion and linearly controlled Pauli-Y rotations, see [1, 2] for more detail. This approximation uses a rescaling_factor to determine the accuracy of the Taylor expansion.

In general, the function of interest ff is defined from some interval [a,b][a,b], the domain to [c,d][c,d], the image, instead of {1,...,N}\{ 1, ..., N \} to [0,1][0, 1]. Using an affine transformation we can rescale ff to f^\hat{f}:

f^(x)=f(ϕ(x))cdc\hat{f}(x) = \frac{f(\phi(x)) - c}{d - c}

with

ϕ(x)=a+ba2n1x.\phi(x) = a + \frac{b - a}{2^n - 1} x.

If ff is a piecewise linear function on mm intervals [pi1,pi],i{1,...,m}[p_{i-1}, p_i], i \in \{1, ..., m\} with slopes αi\alpha_i and offsets βi\beta_i it can be written as

f(x)=i=1m1[pi1,pi](x)(αix+βi)f(x) = \sum_{i=1}^m 1_{[p_{i-1}, p_i]}(x) (\alpha_i x + \beta_i)

where 1[a,b]1_{[a, b]} is an indication function that is 1 if the argument is in the interval [a,b][a, b] and otherwise 0. The breakpoints pip_i can be specified by the breakpoints argument.

References

[1]: Woerner, S., & Egger, D. J. (2018).

Quantum Risk Analysis. arXiv:1806.06893

[2]: Gacon, J., Zoufal, C., & Woerner, S. (2020).

Quantum-Enhanced Simulation-Based Optimization. arXiv:2005.10780

Parameters

  • num_state_qubits (int) – The number of qubits used to encode the variable xx.
  • slope (float |list[float]) – The slope of the linear function. Can be a list of slopes if it is a piecewise linear function.
  • offset (float |list[float]) – The offset of the linear function. Can be a list of offsets if it is a piecewise linear function.
  • domain (tuple[float, float]) – The domain of the function as tuple (xmin,xmax)(x_{\min}, x_{\max}).
  • image (tuple[float, float]) – The image of the function as tuple (fmin,fmax)(f_{\min}, f_{\max}).
  • rescaling_factor (float) – The rescaling factor to adjust the accuracy in the Taylor approximation.
  • breakpoints (list[float] | None) – The breakpoints if the function is piecewise linear. If None, the function is not piecewise.
  • name (str) – Name of the circuit.

Attributes

name

Type: str

A human-readable name for the circuit.

Example

from qiskit import QuantumCircuit
 
qc = QuantumCircuit(2, 2, name="my_circuit")
print(qc.name)
my_circuit

Methods

post_processing

post_processing(scaled_value)

GitHub

Map the function value of the approximated f^\hat{f} to ff.

Parameters

scaled_value (float) – A function value from the Taylor expansion of f^(x)\hat{f}(x).

Returns

The scaled_value mapped back to the domain of ff, by first inverting the transformation used for the Taylor approximation and then mapping back from [0,1][0, 1] to the original domain.

Return type

float

Was this page helpful?
Report a bug or request content on GitHub.